エピソード

  • Episode 541 - The building blocks chemistry
    2023/07/03

    Chemistry is complicated but it had to start somewhere. The origins of complex chemistry had to be built up from scratch. How did complex compounds form on early earth. How can we replicate the conditions of early earth and watch complex chemistry develop? Peering into chemical reactions is tricky because they can happen so fast. 

    1. Zhong Yin, Yi-Ping Chang, Tadas Balčiūnas, Yashoj Shakya, Aleksa Djorović, Geoffrey Gaulier, Giuseppe Fazio, Robin Santra, Ludger Inhester, Jean-Pierre Wolf, Hans Jakob Wörner. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature, 2023; DOI: 10.1038/s41586-023-06182-6

     

    続きを読む 一部表示
    16 分
  • Episode 540 - On the shoulders of giants
    2023/06/30

    The universe scaling work of the NANOGrav team stands on the shoulders of giants to understand giants lurking in our universe. Huge decade spanning scientific projects like NANOGrav are built of ideas and concepts which we can trace back to earlier pioneers. NANOGrav relies on Pulsars to map the universe but the discovery of them can be traced back to one key woman, Jocelyn Bell Burnell. This week we dive into the discovery of Pulsars and how they have been used to make a new way of looking at the universe. Finding a periodic signal in the noise can be helpful but a whole universe them of them can widen our understanding. 

    続きを読む 一部表示
    17 分
  • Episode 539 - Dangerous but beautiful space weather
    2023/06/20

    Weather in space, can seem far away but it's dazzling effects come with some danger. Aurora localised entirely around a satellite can cause a steamy situation for communications. Analysing space weather can lead to better designed satellites capable of withstanding 1-100 year solar storms. It's a balancing act when protecting satellites from solar weather, too much and too little protection can lead to disaster. Meteor showers are beautiful but how do you get one without an icey comet? The only way to get an asteroid to make a lovely meteor shower unfortunately involves a violent collision or big explosion. 

     

    1. Nigel P. Meredith, Thomas E. Cayton, Michael D. Cayton, Richard B. Horne. Extreme Relativistic Electron Fluxes in GPS Orbit: Analysis of NS41 BDD‐IIR Data. Space Weather, 2023; 21 (6) DOI: 10.1029/2023SW003436
    2. W. Z. Cukier, J. R. Szalay. Formation, Structure, and Detectability of the Geminids Meteoroid Stream. The Planetary Science Journal, 2023; 4 (6): 109 DOI: 10.3847/PSJ/acd538
    3.  
    続きを読む 一部表示
    17 分
  • Episode 538 - Colossal volcanic eruptions taking out satellites
    2023/06/12

    When a volcano erupts we're used to imagining damage from lava, ash and even tsunamis. So why were satellites taken out? The colossal eruptions at Hunga-Tonga in 2022 caused pressure waves that caused damage 1000s of km away and even to satellites. Satellites, long distance radio and GPS all rely on the ionosphere, but large eruptions can wreck havoc and cause disruptions. When a pressure wave spreads out from a volcanic eruption, we can also get similar disruptions to the ionosphere. Sometimes even before shock wave hits. The way our ionosphere protects and responds to stellar radiation can be influenced by big events down here on Earth.

    1. Atsuki Shinbori, Takuya Sori, Yuichi Otsuka, Michi Nishioka, Septi Perwitasari, Takuo Tsuda, Atsushi Kumamoto, Fuminori Tsuchiya, Shoya Matsuda, Yoshiya Kasahara, Ayako Matsuoka, Satoko Nakamura, Yoshizumi Miyoshi, Iku Shinohara. Generation of equatorial plasma bubble after the 2022 Tonga volcanic eruption. Scientific Reports, 2023; 13 (1) DOI: 10.1038/s41598-023-33603-3
    続きを読む 一部表示
    15 分
  • Episode 537 - Better batteries that last even in subzero temperatures
    2023/06/06

    Batteries power the modern world, but how can we make them more sustainably and last longer. Lithium powers most of our modern batteries but it doesn't cope with the cold. The electrolytes inside lithium ion batteries are powerful but weak when its cold, so what can we use instead? Extracting lithium is carbon intensive and difficult, are there more abundant materials we can use? Calcium based batteries have a higher power density than lithium but finding a suitable electrolyte is a challenge.

    1. Kazuaki Kisu, Rana Mohtadi, Shin‐ichi Orimo. Calcium Metal Batteries with Long Cycle Life Using a Hydride‐Based Electrolyte and Copper Sulfide Electrode. Advanced Science, 2023; DOI: 10.1002/advs.202301178
    2. Dong‐Joo Yoo, Qian Liu, Orion Cohen, Minkyu Kim, Kristin A. Persson, Zhengcheng Zhang. Rational Design of Fluorinated Electrolytes for Low Temperature Lithium‐Ion Batteries. Advanced Energy Materials, 2023; DOI: 10.1002/aenm.202204182
    続きを読む 一部表示
    16 分
  • Episode536 - Taking pollution out of the atmosphere
    2023/05/29

    Humans are filling the atmosphere with more and more pollution. How does it get out of the air and where does it go? For complex pollutants in the atmosphere, having a bit of hydroxide around helps break it down but where does it come from? Hydroxide can spontaneously generate in droplets but it doesn't seem to need sunlight's or photo-chemistry. Spontaneous generation of hydroxide in water droplets helps clean up our atmosphere. Which trees are best at cleaning up the air around them? From conifers to broad leave trees which help keep our air clean the best? C is for conifer, and their leaves and needles help capture pollution out of the air.  Broadleaf trees are well...broad and this helps them capture lots of air pollution. 

     

    References:

    1. Kangwei Li, Yunlong Guo, Sergey A. Nizkorodov, Yinon Rudich, Maria Angelaki, Xinke Wang, Taicheng An, Sebastien Perrier, Christian George. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proceedings of the National Academy of Sciences, 2023; 120 (15) DOI: 10.1073/pnas.2220228120
    2. H. Pleijel, J. Klingberg, B. Strandberg, H. Sjöman, L. Tarvainen, G. Wallin. Differences in accumulation of polycyclic aromatic compounds (PACs) among eleven broadleaved and conifer tree species. Ecological Indicators, 2022; 145: 109681 DOI: 10.1016/j.ecolind.2022.109681
    続きを読む 一部表示
    18 分
  • Lagrange Point Episode 535 - Trees growing faster during droughts
    2023/05/24

    As our climate changes extreme weather events become more common, but what does this mean for ecosystems? Ecosystems and plants that have adapted to on extreme climate, can thrive in another. An adaption that helps you survive in extreme cold can be very helpful when there is a drought. There is a balancing act between choosing when to grow and when to conserve energy. Plants carefully manage their resources in extreme drought and extreme cold. 

    1. Joan Dudney, Andrew M. Latimer, Phillip van Mantgem, Harold Zald, Claire E. Willing, Jonathan C. B. Nesmith, Jennifer Cribbs, Elizabeth Milano. The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. Global Change Biology, 2023; DOI: 10.1111/gcb.16740
    続きを読む 一部表示
    12 分
  • Episode 534 - Finding a rocky asteroid belt around another star
    2023/05/15

    Asteroid belts are harder to find than Sci-fi would have you believe. Spotting an asteroid belt is easier in the outer solar system, but closer in it gets a bit more blurry. Using the JWT we can use more than just visible light to find tricky interstellar objects. Asteroid belts are messy but they can tell us a lot about a solar system by what they leave in their wake.  Reference:

    1. András Gáspár, Schuyler Grace Wolff, George H. Rieke, Jarron M. Leisenring, Jane Morrison, Kate Y. L. Su, Kimberly Ward-Duong, Jonathan Aguilar, Marie Ygouf, Charles Beichman, Jorge Llop-Sayson, Geoffrey Bryden. Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 2023; DOI: 10.1038/s41550-023-01962-6
    続きを読む 一部表示
    13 分