『ZeRO Memory Optimizations: Toward Training Trillion Parameter Models』のカバーアート

ZeRO Memory Optimizations: Toward Training Trillion Parameter Models

ZeRO Memory Optimizations: Toward Training Trillion Parameter Models

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

The paper introduces ZeRO, a novel approach to optimize memory usage when training massive language models. ZeRO-DP and ZeRO-R components effectively reduce memory redundancy and allow for training models with up to 170 billion parameters efficiently. The technique shows superlinear scalability, user-friendly implementation, and has the potential to democratize large model training in AI research. Read full paper: https://arxiv.org/abs/1910.02054 Tags: Systems and Performance, Deep Learning, Natural Language Processing

ZeRO Memory Optimizations: Toward Training Trillion Parameter Modelsに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。