
Happy Ending Problem: Maths Puzzle That led to a Wedding
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
What if geometry could guarantee a perfect shape—no matter how random your mess? Welcome to the world of the Happy Ending Problem, a mind-bending puzzle in combinatorial geometry that starts with just a handful of dots… and ends with a nearly century-old mystery still unsolved.
In this short documentary, we explore a charming-sounding problem with serious mathematical bite. Originally sparked by a group of Hungarian mathematicians in the 1930s—and rumored to have sparked a romance too—it asks: how many randomly placed points does it take to guarantee a convex polygon of a given size? We know the answer for small cases. But for larger shapes? It's still an open question.
We unravel why this simple-sounding puzzle hides deep complexity. From the ideas of Ramsey theory to breakthroughs in computational geometry, you'll hear how mathematicians—armed with clever algorithms and bold theory—keep pushing toward an answer.
At its heart, this is a story about inevitability: that in chaos, patterns will always emerge. Whether you're a math lover or just here for the beautiful strangeness of it all, you’ll find yourself hooked on the puzzle that promises a happy ending… but won’t tell us when.