エピソード

  • Richard Fortey on Deep Time
    2025/01/08

    The Earth is about 4.5 billion years old. How can we begin to grasp what this vast period of time really means, given that it is so far beyond the time scale of a human life, indeed of human civilization? Richard Fortey has devoted his long and prolific research career at the Natural History Museum in London to the study of fossils, especially the long-extinct marine arthropods called trilobites. In an earlier episode of Geology Bites, he talked about measuring time with trilobites. In this episode, he describes how it was the fossils in the geological record that gave us the first markers along the runway of deep time, providing the structure and language within which our modern conception of deep time emerged.

    続きを読む 一部表示
    30 分
  • Mike Searle on the Mountain Ranges of Central Asia
    2024/12/20

    The Himalaya are just one, albeit the longest and highest, of several mountain ranges between India and Central Asia. By world standards, these are massive ranges with some of the highest peaks on the planet. The Karakoram boasts four of the world’s fourteen 8,000-meter peaks, and the Hindu Kush, the Pamir, the Kunlun Shan, and the Tien Shan each have many peaks above 7,000 meters. No mountain ranges outside this region have such high mountains. Yet we seldom hear much about these ranges.

    In the podcast, Mike Searle describes the origin and geology of six central Asian ranges and how they relate to the Himalaya and the collision of India with Asia. India continues to plow into Asia to this day. How is this movement accommodated? Searle explains the extrusion and crustal shortening models that have been proposed and describes the detailed mapping he and his colleagues conducted in the field in northern India that showed that both mechanisms are operating.

    Searle is Emeritus Professor of Earth Sciences at the University of Oxford.

    続きを読む 一部表示
    35 分
  • Rob Strachan on the Caledonian Orogeny
    2024/12/10

    The Caledonian orogeny is one of the most recent extinct mountain-building events. It took place in several phases during the three-way collision of continental blocks called Laurentia, Baltica, and Avalonia during the early stages of the assembly of the supercontinent Pangea. In the process, Himalayan-scale mountains were formed. While these mountains have been worn down today, we still see plenty of evidence for their existence in locations straddling the Atlantic and the Norwegian Sea. In the podcast, Rob Strachan describes the tectonic movements that led to the orogen and explains how we can reconstruct the sequence of events that occurred and what we can learn about today’s mountain-forming processes by studying the exhumed rocks of ancient orogens.

    Strachan has studied the rocks of the Caledonian orogen for over 40 years, focusing on unraveling the history of the orogen in what is Scotland today. He is Emeritus Professor of Geology at the University of Portsmouth.

    続きを読む 一部表示
    39 分
  • Joe MacGregor on Mapping the Geology of Greenland Below the Ice
    2024/11/13

    With most of Greenland buried by kilometers of ice, obtaining direct information about its geology is challenging. But we can learn a lot from measurements of the island’s geophysical properties — seismic, gravity, magnetic from airborne and satellite surveys and from its topography, which we can see relatively well through the ice using radar. In the podcast, Joe MacGregor explains how he created a new map of Greenland’s geology and speculates on what we can learn from it.

    MacGregor is a Research Physical Scientist at NASA’s Goddard Space Flight Center.

    続きを読む 一部表示
    31 分
  • Adam Simon on Battery Metals
    2024/10/23

    As we wean ourselves away from fossil fuels and ramp up our reliance on alternatives, batteries become ever more important for two main reasons. First, we need grid-scale batteries to store excess electricity from time-varying sources such as wind and solar. Second, we use them to power electric vehicles, which we are now producing at the rate of about 15 million a year worldwide.

    So far, the battery of choice is the lithium-ion battery. In addition to lithium, these rely on four metals — copper, nickel, cobalt, and manganese. In the podcast, Adam Simon explains the role these metals play in a battery. He then describes the geological context and origin of the economically viable deposits from which we extract these metals.

    Simon is a professor of economic geology at the University of Michigan.

    続きを読む 一部表示
    34 分
  • Rufus Catchings on Pinning Down California's Faults
    2024/09/20

    Knowing exactly where faults are located is important both for scientific reasons and for assessing how much damage a fault could inflict if it ruptured and caused an earthquake. In the podcast, Rufus Catchings describes how we can use natural and artificial sources of seismic waves to create high-resolution images of fault profiles. He also explains how faults can act as seismic waveguides, an effect that enables us to determine whether faults are connected to each other. In Napa, a famous wine-growing area near San Francisco, he used guided waves to determine that an active fault is actually ten times longer than previously thought. Rufus Catchings is a Research Geophysicist at the US Geological Survey (USGS). Over the past 40 years, he has studied many dozens of faults in California and elsewhere to pin down their precise locations and help assess the risks they pose.

    続きを読む 一部表示
    34 分
  • Sara Seager on Exoplanet Geology
    2024/09/01

    During the past couple of decades, we have discovered that stars with planetary systems are not rare, exceptional cases, as we once assumed, but actually quite commonplace. However, because exoplanets are like fireflies next to blinding searchlights, they are incredibly difficult to study. Yet, as Sara Seager explains, we are making astonishing progress. Various ingenious methods and the use of powerful space telescopes enable us to learn about exoplanet atmospheres and even, in some cases, what their surfaces consist of.

    Sara Seager’s research concentrates on the detection and analysis of exoplanet atmospheres, and she has just won the prestigious Kavli Prize for this work. She has had leadership roles in space missions designed to discover new exoplanets and find Earth analogs orbiting a sun-like star. She is a Professor of Aeronautics and Astronautics, Professor of Planetary Science, and Professor of Physics at the Massachusetts Institute of Technology.

    続きを読む 一部表示
    35 分
  • Evan Smith on Diamonds from the Deep Mantle
    2024/08/14

    We have only a tantalizingly small number of sources of information about the Earth’s deep mantle. One of these comes from the rare diamonds that form at depths of about 650 km and make their way up to the base of the lithosphere, and then later to the surface via rare volcanic eruptions of kimberlite magma. In the podcast, Evan Smith talks about a new class of large gem-quality deep-mantle diamonds that he and his coworkers discovered in 2016. Inclusions within these diamonds serve as messenger capsules from the deep mantle. They show an unmistakable genetic link to subducted oceanic slabs, and thus give us clues as to what happens to subducted slabs as the pass through the lower mantle transition zone.


    Evan Smith is a Senior Research Scientist at the Gemological Institute of America, New York.

    続きを読む 一部表示
    35 分