
Democratizing Kubernetes for AI and ML with Kubeflow
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
In this episode, we hear from Andrey Velichkevich, a key contributor to the Kubeflow project, an ecosystem of open source projects to streamline the AI and ML lifecycle on Kubernetes. Andrey shares his extensive experience with the project, explains the various components and their use cases, and discusses the community's focus on accessibility and collaboration. They cover the project's evolution, the unique challenges and solutions offered, and the importance of engaging new contributors through initiatives like Google Summer of Code. The conversation highlights the future roadmap for Kubeflow, the significance of cross-project collaboration, and the key to creating a supportive and rewarding contributor environment.
00:00 Introduction and Greetings
00:14 Overview of the Kubeflow Project
01:20 Kubeflow's Ecosystem and Components
02:54 Target Audience and Use Cases
05:12 Future Roadmap and Goals
09:38 Community Engagement and Contributions
19:09 Conclusion and Final Thoughts
Guest: Andrey Velichkevich is a member of Kubeflow Steering Committee and a co-chair of Kubeflow AutoML and Training WG. Additionally, Andrey is an active member of the CNCF WG AI. He is one of the authors of the CNCF AI white paper and he is helping with various AI initiatives from the CNCF community.