エピソード

  • Stem Cell Regenera: A Regenerative Approach to Activating Dormant Ovarian Follicles
    2025/07/21
    A new #study published recently in Volume 17, Issue 6, examines a novel treatment for women with ovarian failure. Researchers from IVI Clinics Alicante in Spain investigated a procedure called Stem Cell Regenera, which uses the body’s own stem cells and platelet-rich plasma to activate dormant follicles in the ovaries. This innovative protocol could expand options for patients with ovarian failure who have not responded to conventional fertility therapies. Understanding Ovarian Failure Ovarian failure affects women’s ability to conceive by reducing the quantity and quality of eggs in the ovaries. Conditions like Poor Ovarian Response, Diminished Ovarian Reserve, and Premature Ovarian Insufficiency are key reasons for infertility and make it hard to use assisted reproduction methods like in vitro fertilization (IVF). Standard fertility treatments often fail to improve outcomes for these patients, leaving donor eggs as the primary alternative. However, recent advances in regenerative medicine have raised the possibility of restoring ovarian function using cellular therapies. Emerging research suggests that the right biological conditions could reactivate dormant follicles within the ovaries, potentially helping patients to use their eggs. Full blog - https://aging-us.org/2025/07/stem-cell-regenera-a-regenerative-approach-to-activating-dormant-ovarian-follicles/ Paper DOI - https://doi.org/10.18632/aging.206274 Corresponding author -Amparo Santamaria - Amparo.santamaria@ivirma.com Author interview - https://www.youtube.com/watch?v=oRFJNwnXZWI Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206274 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, Stem Cell Regenera, oocyte activation, ovarian regeneration, G-CSF, SCFE-PRP, ovarian failure To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    5 分
  • Stem Cell Treatment Shows Potential for Restoring Fertility in Women with Ovarian Failure
    2025/07/21
    BUFFALO, NY — July 21, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on June 27, 2025, titled “Enhancing oocyte activation in women with ovarian failure: clinical outcomes of the Stem Cell Regenera study using G-CSF mobilization of peripheral blood stem cells and intraovarian injection of stem cell factor-enriched platelet rich plasma in real-world-practice.” This study, led by Amparo Santamaria with co-authors Ana Ballester and Manuel Muñoz from IVI Clinics Alicante, evaluates the effectiveness and safety of a regenerative treatment that may enable women with ovarian failure to regain the ability to produce viable eggs. The approach combines stem cell mobilization and enriched plasma injections into the ovaries to stimulate follicle growth. It provides an alternative for patients experiencing infertility due to poor ovarian response, diminished ovarian reserve, or premature ovarian insufficiency. Researchers evaluated the Stem Cell Regenera treatment in 145 women, aged 26 to 44 years, who had not responded to conventional fertility therapies. The procedure involved mobilizing the body’s own stem cells using granulocyte colony-stimulating factor (G-CSF), followed by an injection of platelet-rich plasma enriched with stem cell factors directly into the ovaries. This method was designed to activate dormant follicles and promote ovarian regeneration. Nearly 70% of participants demonstrated oocyte activation, defined as increased follicle growth or a rise in key hormone levels. Approximately 7% achieved spontaneous pregnancies, and 14% conceived through in vitro fertilization (IVF) after treatment. These results indicate that the therapy stimulates ovarian activity and may increase the chances of conception in selected patients. “The primary outcome measures were the rate of oocyte activation, leukocytes and stem cell count, and pregnancy rates.” No severe adverse effects were reported. Most participants tolerated the treatment well, with only mild and transient symptoms such as headaches or fatigue. The use of the patient’s own cells minimized the risk of immune reactions and helped ensure the treatment was safe. The findings provide evidence of effectiveness and safety for the Stem Cell Regenera protocol in a clinical setting. While the study was retrospective observational, the outcomes support further investigation through larger controlled trials to confirm long-term benefits and identify which patient populations may gain the greatest benefit from this approach. This research contributes to the growing field of regenerative medicine in reproductive health, offering clinicians additional tools to address infertility in women with complex ovarian conditions. DOI - https://doi.org/10.18632/aging.206274 Corresponding author -Amparo Santamaria - Amparo.santamaria@ivirma.com Author interview - https://www.youtube.com/watch?v=oRFJNwnXZWI Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206274 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, Stem Cell Regenera, oocyte activation, ovarian regeneration, G-CSF, SCFE-PRP, ovarian failure To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • New Aging Clock Predicts Early Risk of Muscle Loss in Older Adults
    2025/07/17
    BUFFALO, NY — July 17, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on June 9, 2025, titled “Developing a quantitative estimate of muscle age acceleration by a novel phenotypic clock: cross-sectional study in healthy, middle-aged and older adults.” In this study, led by first authors Lucia Ventura, Antonella Cano and Marco Morrone, along with corresponding author Franca Deriu from the University of Sassari, researchers introduce a new method to predict how muscles age, offering an early warning system for sarcopenia, the condition of age-related muscle loss. The study demonstrates how a simple, low-cost approach can identify middle-aged and older adults at higher risk for declining muscle health, allowing timely preventive strategies. The researchers developed a tool called Muscle Age Acceleration (MAA), which measures how quickly an individual’s muscles are aging compared to their actual age. By analyzing physical performance tests and body composition in 215 healthy participants aged 50 to 90 years, the researchers found that about 25% of individuals experience accelerated muscle aging. These individuals had a higher probability of developing sarcopenia, despite appearing healthy and not yet having received a diagnosis of the condition. Sarcopenia reduces muscle strength and physical performance, being a growing concern for older adults. It contributes to frailty, falls, and an increased risk of disability. Despite greater awareness, this condition often goes undetected until significant muscle loss occurs. This new muscular clock offers an opportunity to detect subtle changes in muscle health before they progress to more severe stages. By using common tests such as handgrip strength, walking speed, and mobility assessments, the MAA tool can classify individuals as having accelerated, normal, or decelerated muscle aging. Those with accelerated muscle aging also showed small changes in blood markers, suggesting early and hidden inflammation linked to muscle decline. This finding indicates that MAA may act as both a predictor of muscle-related aging and an indicator of overall health risks. “According to MAA, three trajectories were identified: accelerated agers displayed higher risk for sarcopenia (19%), as compared to normal (9%; p < 0.0001) and decelerated (2%; p < 0.0001), paralleled by significant subclinical alterations of haemato-chemical markers in accelerated agers.” If validated in future studies, this innovative approach could transform how clinicians and caregivers screen for early signs of sarcopenia. Its simplicity makes it suitable for use in clinics and community settings, helping older adults maintain independence and quality of life as they age. In summary, these findings highlight the importance of monitoring muscle health and physical performance in older adults. By detecting early signs of muscle aging with tools like MAA, interventions such as exercise and dietary changes can be introduced earlier, potentially delaying or preventing sarcopenia and its complications. DOI - https://doi.org/10.18632/aging.206269 Corresponding author - Franca Deriu - deriuf@uniss.it Video short - https://www.youtube.com/watch?v=kc9i0aJNNp0 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Behind the Study: Enhancing Oocyte Activation in Women with Ovarian Failure
    2025/07/15
    Dr. Amparo Santamaria describes a #research paper she co-authored that was #published in Volume 17, Issue 6 of Aging (Aging-US), titled “Enhancing oocyte activation in women with ovarian failure: clinical outcomes of the Stem Cell Regenera study using G-CSF mobilization of peripheral blood stem cells and intraovarian injection of stem cell factor-enriched platelet rich plasma in real-world-practice.” DOI - https://doi.org/10.18632/aging.206274 Corresponding author -Amparo Santamaria - Amparo.santamaria@ivirma.com Video interview - https://www.youtube.com/watch?v=oRFJNwnXZWI Abstract The study assesses the effectiveness and safety of the Stem Cell Regenera Treatment for oocyte activation in women with ovarian failure, including conditions such as Poor Ovarian Response (POR), Diminished Ovarian Reserve (DOR), and Premature Ovarian Insufficiency (POI). This retrospective observational study was conducted from January 2023 to December 2024 at the IVIRMA Alicante Clinics in Spain. Women diagnosed with ovarian failure participated in the study, which involved mobilizing Hematopoietic Stem Cells from bone marrow into peripheral blood using granulocyte colony- stimulating factor (G-CSF). This was followed by an intraovarian injection of Stem Cell Factor- enriched Platelet Rich Plasma (SCFE-PRP). The primary outcome measures were the rate of oocyte activation, leukocytes and stem cell count, and pregnancy rates. Oocyte activation was defined as an increase in total Antral Follicle Count of three or more follicles after treatment and/or at least a 20% rise in Anti-Müllerian Hormone levels. Safety was assessed based on adverse effects. Pregnancy rates were evaluated for both spontaneous gestation and following in vitro fertilization (IVF) treatment. A total of 145 women participated: the overall activation rate was 68.28%, with 7.07% achieving spontaneous gestation and 14.14% achieving pregnancy following IVF. Mobilization of CD34+ cells was successful in all participants, with an average collection of 32.96 CD34+ cells/μl. No severe adverse effects were observed. The study concluded that the Stem Cell Regenera Treatment is effective and safe for oocyte activation in women with ovarian failure in real-world practice. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206274 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, Stem Cell Regenera, oocyte activation, ovarian regeneration, G-CSF, SCFE-PRP, ovarian failure To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    8 分
  • How Telomerase Inactivation in Aging Cells Influences Cancer Growth and Metastasis
    2025/07/15
    BUFFALO, NY — July 15, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on June 5, 2025, titled “Senescence caused by telomerase inactivation in myeloid, mesenchymal, and endothelial cells has distinct effects on cancer progression.” In this study, first author Joseph Rupert, along with corresponding author Mikhail G. Kolonin and colleagues from The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, at The University of Texas Health Sciences Center at Houston, investigated how aging-related changes in different cell types affect cancer progression. By turning off telomerase in specific cell populations in mice, the researchers discovered that cell aging, or senescence, can slow primary tumor growth but also trigger unexpected effects. This work sheds light on the complex relationship between aging cells and cancer and may help guide future anti-cancer strategies. The team used genetically modified mice to deactivate telomerase, the enzyme that maintains chromosome ends, specifically in immune, connective tissue, and blood vessel cells. This caused these cells to enter a state of senescence, where they stop dividing and release inflammatory signals. The researchers then implanted breast, prostate, and pancreatic cancer cells into the mice and tracked how tumors developed. They found that when telomerase was inactivated in immune cells or connective tissue cells, tumors grew more slowly. However, these tumors showed signs of increased tissue damage and potential aggressiveness. Interestingly, when telomerase was turned off in endothelial cells, which cover blood vessels, tumors shrank and became poorly supplied with blood, leading to oxygen deprivation. In the case of pancreatic cancer cells, this low-oxygen environment made them more likely to spread to the liver, highlighting a potential risk of targeting these cells. “[…] this study shows that senescence and metabolic dysfunction resulting from telomerase inactivation in distinct cells in the tumor microenvironment have different effects on tumor growth and metastasizing of carcinomas.” This research provides important insights into how aging cells within the tumor microenvironment (TME) influence cancer behavior. While senescence in certain cell types can help suppress tumor growth, it may also create conditions that favor cancer metastasis. These findings highlight the need to consider cell type-specific effects when developing therapies that target senescent cells. By mapping how different cell populations contribute to cancer progression in aging tissues, this study opens the door for more precise approaches to prevent both tumor growth and spread. DOI - https://doi.org/10.18632/aging.206268 Corresponding author - Mikhail G. Kolonin - mikhail.g.kolonin@uth.tmc.edu Video short - https://www.youtube.com/watch?v=py8wFKj7enE Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206268 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, senescence, telomerase, myeloid, mesenchymal, endothelial To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Spermidine and Protein Restriction Independently Protect Brain and Body from Aging in Flies
    2025/07/10
    BUFFALO, NY — July 10, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on June 7, 2025, titled “Spermidine supplementation and protein restriction protect from organismal and brain aging independently.” In this study, led by YongTian Liang and Stephan J. Sigrist from Freie Universität Berlin, Charité Universitätmediz Berlin, and the Leibniz-German Center for Neurodegenerative Diseases (DZNE), researchers investigated how spermidine, a natural substance in the body, and protein intake levels influence aging in fruit flies. They found that spermidine supplementation and changes in protein intake influenced brain health and aging in distinct ways. These insights could guide the development of new strategies to slow age-related decline in humans. “In this study, we combined low- and high-protein diets (2% versus 12% yeast in food) with spermidine supplementation in aging Drosophila fruit flies.” Aging of the brain and body contributes to cognitive decline and diseases in older populations. Scientists have long explored dietary restriction and fasting as ways to slow these processes. This study reveals that spermidine supplementation supports brain health by enhancing mitochondrial function and memory, while protein restriction independently promotes longevity and protects against movement decline. The researchers discovered that spermidine improved memory and preserved physical activity in aging flies regardless of protein intake. In contrast, reducing protein alone boosted mitochondrial activity and extended lifespan without directly enhancing memory. Importantly, the combined approach of protein restriction and spermidine supplementation provided additive benefits, suggesting potential for synergistic effects. This work highlights that spermidine acts through a pathway involving hypusination, a vital process where cells modify proteins to support energy production and repair, while protein restriction works via nutrient-sensing pathways that promote longevity. These independent mechanisms may explain why combining the two interventions offers greater protection against aging effects. Although conducted in flies, the study underscores the possibility of designing dietary and supplement-based interventions to combat human age-related decline. As spermidine levels naturally decline with age, supplementation combined with moderated protein intake could offer a safe way to promote brain health and longevity in humans. The authors point out that it takes further studies in mammals and humans to validate these results. If confirmed, such strategies could lead the way for accessible approaches to promote healthy aging and reduce the burden of cognitive disorders in older populations. DOI - https://doi.org/10.18632/aging.206267 Corresponding authors - YongTian Liang - yongtian.tim.liang@gmail.com, and Stephan J. Sigrist - stephan.sigrist@fu-berlin.de Video short - https://www.youtube.com/watch?v=QfxpK9tka7U Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206267 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, brain aging, spermidine, protein restriction, mitochondria To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Now Accepting Submissions: Special Collection on Cognitive Aging
    2025/07/08
    BUFFALO, NY — July 8, 2025 — As populations worldwide continue to age, understanding the mechanisms and manifestations of cognitive aging is increasingly urgent for science, medicine, and society. Age-related cognitive decline ranges from mild memory lapses to the onset of dementia, and is shaped by a complex interplay of molecular, cellular, systemic, and social determinants. In this special collection, Aging (Aging-US) seeks to bring together cutting-edge research that spans the cellular and molecular underpinnings of cognitive aging with insights into the psychosocial, behavioral, and environmental factors that modulate its course. By integrating basic biology with translational and societal dimensions, this collection aims to foster a holistic understanding of how and why cognitive function changes with age—and what can be done to preserve it. We welcome original research articles, reviews, and perspectives across model systems and human studies, particularly those that promote interdisciplinary insights and translational potential. POTENTIAL TOPICS Molecular and Cellular Mechanisms -Senescence, inflammation, and neurodegeneration in cognitive decline -Mitochondrial dysfunction and oxidative stress in aging neurons -Neurovascular aging and blood-brain barrier integrity -Single-cell and spatial transcriptomics of the aging brain -mTOR, autophagy, and proteostasis in age-related cognitive impairment -The role of glial cells (microglia, astrocytes) in brain aging Genetics and Biomarkers -Genetic risk factors and epigenetic modifications associated with cognitive aging -Biomarkers of cognitive resilience and vulnerability -Neuroimaging and fluid-based biomarkers in aging populations Interventions and Lifestyle Factors -Cognitive benefits of caloric restriction, exercise, or senolytic therapies -Preclinical and clinical trials targeting aging pathways to prevent cognitive decline -Impact of sleep, nutrition, and metabolic health on cognition in older adults -Use of cognitive strategies and compensatory techniques to maintain or enhance function in aging Environmental and Social Contexts -Impact of social isolation, education, and socioeconomic status on cognitive trajectories -Lifelong cognitive reserve and its determinants -Cross-cultural and demographic studies on aging and cognition -Digital health tools for monitoring or enhancing cognitive function in the elderly SUBMISSION DETAILS: -Submission Deadline: March 31, 2026 -Manuscript Format: Please follow the journal’s submission guidelines -Peer Review: All submissions will undergo a rigorous peer-review process -Submission Link: https://aging.msubmit.net/cgi-bin/main.plex To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    3 分
  • Abdominal Fat Linked to Reduced Strength and Mobility in Adults
    2025/07/08
    BUFFALO, NY — July 8, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on May 30, 2025, titled “Impact of waist-to-hip and waist-to-height ratios on physical performance: insights from the Longevity Check-up 8+ project.” In this study, researchers led by first author Anna Maria Martone and corresponding author Elena Levati from the Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS and Università Cattolica del Sacro Cuore found that adults with higher waist-to-hip and waist-to-height ratios tend to have poorer physical performance. These simple body shape measures emerged as important tools for assessing strength and mobility, which are essential for maintaining independence as people age. The analysis included data from more than 10,000 Italian adults aged 18 to 98 years who participated in the Longevity Check-up 8+ project, a nationwide health initiative aimed at promoting healthy lifestyles and raising awareness of cardiovascular risks. Researchers measured participants’ waist-to-hip (WHR) and waist-to-height (WHtR) ratios and assessed their physical function using the five-repetition chair stand test, a standard evaluation of lower body strength and mobility. “Among 10690 participants (mean age 57.0 ± 14.8 y; 54% females), men exhibited higher WHR and WHtR and a higher prevalence of abnormal values (61% and 71%).” The results showed that individuals with higher waist-to-hip and waist-to-height ratios took longer to complete the test, reflecting reduced physical function. Even after adjusting for lifestyle factors such as diet, exercise habits, and cardiovascular health, these ratios remained strongly linked to poorer performance. The waist-to-height ratio, in particular, proved to be a more effective predictor of physical ability across different age and gender groups. These findings highlight how abdominal fat, already tied to serious health risks like heart disease and diabetes, may also impair mobility and independence as people age. Monitoring waist measurements could help identify individuals at risk of functional decline, offering a simple tool to support public health in aging populations. The waist-to-height ratio is especially valuable because of its simplicity and practicality. Requiring only waist and height measurements, it can be easily used in clinical settings and community health programs to screen for potential mobility issues. Encouraging healthy waist sizes through balanced diets and regular exercise could help preserve physical performance and delay age-related decline. These findings may guide future prevention strategies. By identifying individuals at higher risk, healthcare professionals can implement targeted interventions to support long-term health and independence. DOI - https://doi.org/10.18632/aging.206260 Corresponding author - Elena Levati - elena.levati01@icatt.it Video short - https://www.youtube.com/watch?v=WqGlZ1qGZPI Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206260 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, physical performance, body composition, waist-to-hip ratio, waist-to-height ratio, chair-stand test To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分