
Agent
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Humans are fantastic at messy pattern recognition tasks. However, they often rely on tools- like books, Google Search, or a calculator - to supplement their prior knowledge before arriving at a conclusion. Just like humans, Generative AI models can be trained to use tools to access real-time information or suggest a real-world action. For example, a model can leverage a database retrieval tool to access specific information, like a customer's purchase history, so it can generate tailored shopping recommendations. Alternatively, based on a user's query, a model can make various API calls to send an email response to a colleague or complete a financial transaction on your behalf. To do so, the model must not only have access to a set of external tools, it needs the ability to plan and execute any task in a self- directed fashion. This combination of reasoning, logic, and access to external information that are all connected to a Generative AI model invokes the concept of an agent, or a program that extends beyond the standalone capabilities of a Generative AI model. This whitepaper dives into all these and associated aspects in more detail.
Deseas apoyar este tipo de contenido puedes realizarlo a través de este link:
coff.ee/Javiervasquezpodcast