『AI Extreme Weather and Climate』のカバーアート

AI Extreme Weather and Climate

AI Extreme Weather and Climate

著者: Zhi Li
無料で聴く

このコンテンツについて

Brace yourself for a deep dive into the science of how artificial intelligence is revolutionizing our understanding of extreme weather and climate change. Each episode brings you cutting-edge research and insights on how AI-powered tools are being used to predict and mitigate natural disasters like floods, droughts, and wildfires. We'll unravel the complexities of climate models, explore the frontiers of AI-powered early warning systems, and discuss the ethical implications of AI-driven solutions. Join us as we break down the science and uncover the transformative potential of AI in tackling our planet's most pressing challenges.

Zhi Li, 2025
個人的成功 地球科学 科学 自己啓発
エピソード
  • Ep.6 How to fine tune a weather foundation model to hydrological variables?
    2025/06/30

    This research evaluates the performance of the Aurora weather foundation model by using lightweight decoders to predict hydrological and energy variables not included in its original training. The study highlights that this decoder-based approach significantly reduces training time and memory requirements compared to fine-tuning the entire model, while still achieving strong accuracy. A key finding is that decoder accuracy is influenced by the physical correlation between the new variables and those initially used for pretraining, suggesting that Aurora's latent space effectively captures meaningful physical relationships. The authors argue that the ability to extend foundation models to new variables without full fine-tuning is an important quality metric for Earth sciences, promoting accessibility for communities with limited computational resources. They conclude that rich latent space representations allow for accurate predictions of new variables using lightweight extensions, advocating for future foundation models that encompass a broad range of physical processes.

    Reference:

    Lehmann, F., Ozdemir, F., Soja, B., Hoefler, T., Mishra, S., & Schemm, S. (2025). Finetuning a Weather Foundation Model with Lightweight Decoders for Unseen Physical Processes. arXiv preprint arXiv:2506.19088.

    続きを読む 一部表示
    10 分
  • Ep.5 What is foundation model - drawing from numerical simulation
    2025/06/03

    When we talk about foundation models, what are we talking about? This is a reflection piece on foundation models by drawing an analogy from numerical solutions in fluid dynamics.

    This paper explore the challenges in building these models for science and engineering and introduce a promising framework called the Data-Driven Finite Element Method (DD-FEM), which aims to bridge traditional numerical methods with modern AI to provide a rigorous foundation for this exciting new field.

    Choi, Y., Cheung, S. W., Kim, Y., Tsai, P. H., Diaz, A. N., Zanardi, I., ... & Heinkenschloss, M. (2025). Defining Foundation Models for Computational Science: A Call for Clarity and Rigor. arXiv preprint arXiv:2505.22904.

    続きを読む 一部表示
    29 分
  • Ep.4 Any-to-any Earth Observation Generation and Thinking - TerraMind
    2025/05/07

    IBM recently released the first-of-its-kind geospatial intelligence any-to-any model TerraMind. In this podcast, we feature this new generative model and learn its capability of multi-modality. I believe there is a lot of potential with such a model.

    Jakubik, J., Yang, F., Blumenstiel, B., Scheurer, E., Sedona, R., Maurogiovanni, S., Bosmans, J., Dionelis, N., Marsocci, V., Kopp, N., Ramachandran, R., Fraccaro, P., Brunschwiler, T., Cavallaro, G., & Longépé, N. (2025). TerraMind: Large-Scale Generative Multimodality for Earth Observation. ArXiv. https://arxiv.org/abs/2504.11171

    続きを読む 一部表示
    24 分

AI Extreme Weather and Climateに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。